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ABSTRACT

Multistate Coherent Systems.

The vast majority of reliability analyses assume that components and

system are in either of two states: functioning or failed. The present paper

develops basic theory for the study of systems of components in which any of

a finite number of states may occur, representing at one extreme perfect

functioning and at the other extreme complete failure. We lay down axioms

extending the standard notiot~ of a coherent system to the new notion of a

multistate coherent system. For such systems we obtain deterministic and

probabilistic properties for system performance which are analogous to well—

known results for coherent system reliability.
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Multistate Coherent Systems.

1. Introduction and Summa ry

A central problem in reliability theory is to determine the relationship

between the reliability of a complex system and the reliabilities of its

components. Thus far , in practically all treatments of this problem, the

system ar.d its components are considered to be in either of two states:

functioning (denoted by 1) and failed (denoted by 0). The theory of binary

coherent structures has served as a unifying foundation for a mathematical

and statistical theory of reliability for this dichotomous case. In fact,

fairly complete solutions of various aspects of this problem have been

obtained by Bir-nbauin , Esary , Saunders , Marshall , Barlow , and Proschan. See,

for example , (1) ,  [3 1, ( 4 ] ,  ( 5 ] ,  ( 6 ] ,  and [7 ] .

In many real l ife situations, however , the systems and their components

are capable of assuming a whole range of levels of performance , vary ing fr om

perfect functioning (denoted by level M, say) to complete failure (denoted by

0). In these situations, the dichotomous model is an oversimplification of

the actual situation , and so models representing multistate systems and

multistate components are much more useful in describing the performance of

these systems in terms of the performance of their components.

Unfortunately , very little work has been done on this more general

problem of multistate systems. Among the earlier papers treating aspects of

multistate systems are [8], [9), [10], [11], [13] , and [14]. With the

exception of (101 and (11], these papers deal mainly with models for

cannibaliz ~~, and barely touch on the performance of systems and components

assuming t. ~ two states. More recent and more sophisticated work on
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multistate systems has been performed by Barlow [2] and Ross [12); however ,

their models are more specialized than ours, as we shall see.

The main purpose of the present paper is to develop an adequate ,~enera1

model and theory for the case in which both systems and components may assume

any of an ordered set of states, say 0 ,1,2,... ,M; this theory generalizes

coherent structure theory. We develop the concept of a multistate coherent

structure as a generalization of the well—known concept of binary coherent

structure. We then use this concept as a unifying foundation for the study

of the relationship between the performance of a sytem and the performance

of the components in the system. In forthcoming papers , we shall present

treatments of various stochastic aspects of multistate systems with the aim

of ultimately achieving a comprehensive theory analogous to coherent structure

theory in the binary case (see [1]).

We now sumsarize the contents of this paper. Our formulation and

treatment are similar to that of Barlow and Proschan [1] for the two state

case. In Section 2 we present the notation and terminology used throughout

the paper. In Section 3 we consider a system of n components. For each

component and for the system itself , we can distinguish among say M+l

states representing successive levels of performance ranging from perfect

functioning (level M) down to complete failure (level 0). For component i,

x~ denotes the corresponding state or performance level, 1—1 ,2,. . . ,n ; the

vector x (x1,. . . ,x) denotes the vector of states of components 1,... ,n.
We assume that the state ~ of the system is a deterministic function of the

states x1,. . . ,x of the components. Thus p = ~~x), where x assumes its

values in ~~ s — (0,1,... ,M}, and ~ assumes its values in S. We define a

multistate coherent sturcture as a natural generalization of the standard
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concept of a binary coherent s truc ture  by requiring three reasonable

conditions that ~ must sat isfy.

We then obtain deterministic relationships between the performance of

a system and the performance of its components; these relationships are

natural generalizations of well—known results in the binary case. Thus we

show that the performance of a multistate coherent system is bounded below

by the performance of a series system and bounded above by the performance

of a parallel system. We next present a decomposition identity useful in

deriving inductive proofs and probabilistic properties for systems. Finally,

we generalize the practical result that redundancy at the component level is

better than redundancy at the system level.

In Section 4 we investigate the probabilisitic ..aspects of multistate

coherent systems. We relate in a probabilistic sense the performance of

the system to the performance of its components , assumed statistically

independent. Next the decomposition identity of Section 3 is used to obtain

a corresponding decomposition identity for the performance function of the

system. This decomposition identity is then used to show that system

Derformance is a monotone increasing function of component performances. We

end the section by obtaining bounds on system performance.

Finally , in Section 5 we study some dynamic aspects of multistate

coherent systems. In earlier sections, we tacitly assume that time is

fixed. In Section 5 we consider multistate coherent system as operating

over time. At time 0 the system and each of its components are in state M

(corresponding to perfect functioning). As time passes, the performance

level of components (and consequently of the system) deteriorates to lower

levels until finally level 0 (complete failure) is reached. We define the
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concept s of IFRA and ~BU stochastic processes introduced by Ross [123. We

present a d i f f e ren t  def in i t ion  for an NBU stochastic process, and prove

the analogue of the NBU closure theorems using a new characterization of

the NBU property.

2. Notation and Terminology.

The vec tor x (x
1
,... ~x~) denotes the vector of states of components

1,... ,n .

S — (0,1,... ,M} denotes the set of possible states of both
components and systems

C — (1,2,... ,n} denotes the set of component indices.

(ji,x) (x1,... ,x~~1, j, xj+1~~. .. ,x), where j — 0,1,... ,M.

(, x) (x~ ,. .. ,x~_1, • , x~~1,... ,x ) .

(j, j,...,j).

< x means y~ < x
1 

for i 1 ,. .. ,n and y~ < x1 for some i.

xVy denotes max(x,y).

xV~ (x
1
V ,. . . ,xVy ).

xAy denotes min(x,y).

xA~ (x1Ay1,.. . ,x1~Ay~).

“increasing” is used in place of “nondecreasing” , and “decreasing”
is used in place of “nonincreasing” .

When we say f(x
1
,.. . ,x ) is increasing we mean f is increasing in

each argument. U

a univariate distribution F, its complement 1—F is denoted by
F.

3. Deterministic Properties of Multistate Coherent Systems.

Consider a system of n components. We assume that for both the system

and its components we can distinguish among a finite number of distinct
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states representing various levels of performance , ranging trom perfect

functioning (state N) to complete failure (state 0). As time passes a

component, starting in state M, deteriorates and enters state N-i , ~ieteri—

orates further entering state ~—2 , etc., until ultimately it descends to

state 0; a similar succession of decreasing state levels describes the

system progression over time. (In a later paper , we consider the case of

a continuous range of performance levels varying over the interval [0,1).)

The performance x~ of component i assumes a value in the sec

S — (0 ,1,... ,M}. We assume that the performance of the systems depends

deterministically on the performance of each of the components. Thus the

state of the system is determined by a function ~: Sn .. S. Given x, the

vector of component states , we may determine ~(x), the system state. The

function ~ is called the structure function of the system.

The structure function ~ satisfies certain conditions that represent

intuitively reasonable properties of systems encountered in practice . In

the binary case the following two conditions are required for a system to

be a coherent structure ((1], Def. 2.1 , p. 6) :

(1) The function ~(x) is increasing.

(ii) Each component is relevant to the system; i .e . ,  for each i

there exists a vector (.
~~x) such that q (11,x) > 4 ( O i,x) .  This means

that the function ~ is not constant in the ith argument , its ]., . . .  ,n.

Condition (I) embodies the reasonable assumption that improving the

performance of a component is not harmful to system performance. Condition

(ii) eliminates from consideration components which have no effect  on system

performance.

In our present multistate model, we stipulate three conditions :



— 6 —

Definition 3.1. A system of n components is said to be a multistate

coherent system (MCS ) if its structure function t satisfies :

( i ) .  ~ is increasing.

(ii) . For level j of component i , there exists a vector (1, x)

such that ~(i~~x) — j while (Z1 ,x) # j  for Z 
~ 

j, i 1 ,...  , n and

j—0,1,... ,M.

(iii) . ~
(j) - j for j 0 ,l,...

Note that conditions (i) and (ii) generalize conditions (i) and (ii)

in the binary case. Condition (iii) is automatically satisfied in the binary

case , but is not implied in the present multistate case by (i) and (ii)

Some examples of MCS’s are:

Example 3.1. A series system: Q(x) — mm x~.

l<i<n

Example 3.2. A parallel system: ~(x) — max x~.
l<i(n

Example 3.3. A k—out—of—n structure : c~(x) — X ( k+l )~ 
where

< ... < X ( )  is an increasing rearrangement of x1,. . . ,x .
Example 3.4. Let Pr,... ,P be nonempty subsets of C — il ,... ,n} such that

U = C and P1 1~
P , i~&j .  Let ~~x) — max mm x~. Then ~(x) is a MCS , and

its]. j
1~j<r icP4

,P are called its mm path sets.

Remark 3.1. The structures in Examples 3.1, 3.2, and 3.3 are natural

generalizations of familiar basic structures in the binary case. They

constitute special cases of the structure in Example 3.4, which in the

binary case defines the most general binary coherent structure ([1], Chap. 1).

The structure function of Example 3.4 is due to Barlow [2]. Since the structure

functions of Example 3.4 satisfy conditions (1) , (ii) , and (iii) of
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Definition 3.1, they constitute a subclass of our NCS class. By examining

some special cases it is easy to see that the c!as~ in Example 3.4 is act~..d.1y

a small subclass of our MCS. For instance , for a ‘wo component system ,

Example 3.4 yields only two systems : the parallel system and the series

system. However for S a 10,1,2) there are more than 1~’ NCS’s.

In the remainder of this section we investigate the structural properties

of the Z4CS. We extend results obtained in the binary case ([1). Chap. 1) to

the more general multistate case.

The following lemma gives a decomposition identity useful in carrying

out inductive proofs. It holds for any multistate structure , not just for

the MCS.

Lemma 3.1. The following identity holds for any n—component structure

function ~~.

H
(3.1) ~() — Z 

~~~ 
1[x ~~ 

for i.i~ ...
j=0 i

where

1 if x~=j
I —[x~sj] 0 if ~~~~

The proof is obvious and therefore omitted.

The following theorem gives simple bounds on MCS performance.

Theorem 3 1 .  Let ~ be the structure function of an MCS of n components.

Then

(3.2) mm x~ < ~ (x) < max x~.
l<i<n 1<i<n

Proof. Let in = max x~. Then ~(x) < t (rn) by the monotonicity of ~~~.

1<i <n

By condition (iii) of Definition 3.1, ~~m) m. The upper bound follows.
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The prooi establishing the lower bound is similar.

Theorem 3.1 ~c.~tes ::~~ t a parallel System yields the b~~~ t performance

of an ~1CS, and a series sy stem yields the worst performance. Using this

theorem , we will show similar probab i1isti~ bounds in Sectio n 4.

As in the binary case, we may define a dual. structure for each multistate

structure.

Definition 3.2. Let ~ be the structure function of a multistate system.

D .The dual structure function ~ .c g4ven by:

(3.~~) — N — ~(M—x1
,. .. ,M—x ).

It is easy to verify that the dual of an MCS is an MCS.

Example 3.5. The dual of a series (parallel) system is a parallel (series)

system. More generally , the dual of a k—out—of—n system is an (n—k+1)—out—

of—n system.

Design engineers have used the weLl—known principle that redundancy at

the component level is preferable to redundancy at the system level (all

other things being equal). We present this principle in mathematical form

along with a proof for MCS’s.

Theorem 3.2. Let ~ be the structure function of an MCS. Then

(i) .  ~ (xV~ ) > 
~

(x) V

(ii). 
~ (~A~) < 

~ 
(~ ) A ~ (i) .

Equality holds in (i) for all x and ~ if and only if the structure is

parallel. Equality holds in (ii) for all x and ~ if and only if the structure

is series .

Proof. (i). x
1 

V 
~~~~ ~~ . 

xi, i—l ,... ,n. Thus ~(xV~) > ~ (x) since ~ is

increasing. Similarly , ~(xV~) > 4 (i) . It follows that ~P(xV~ ) > max[~~(x),

~ 
(z)] ~ (x) V ~ (i) .
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(ii). A similar argument proves (Li).

If the structure is parallel (series), then equality in (i) ((ii)) is

readily established .

Next assume ~(xVv) — ~(x) V ~(~~ ) fo r  all x and ~~. For each i ,j, there

exists (.
1~
x) such that ~~(i~~~~~~ ) — i and ~~(~~~~j t~~~~) < j when Z < j, i-i ,.. ., i and

j 0,1,... ,M (by (ii) of Def. 3.1). Since (j1
.X) 

~~~~~ 
V (O~~x). we

have j — ~(j1
,x) — V ~(O~ ,x). It follows that ~(j~~O) — j for

i 1 ,. . . ,n and j—O ,1,...,~1. Now (x) — ~(x 1,O ~ V ~(0 ,x2,0 

V ... V ~(O ,O ,. .. ,x )  — x
1
Vx,V. . .Vx max x

1
. Therefore ~ is a parallel

1< i <nstructure . — —
Finally , to prove necessity for equality in (ii), assume ~(xA~)

‘~(x) \ ~(v) for all x and v. Let be the dual MCS of :. It is easy to

show that ~~ (xV~) — ~~(x) V 
~~~~

) for all x and ~~. Hence by (i), is a

parallel structure. Therefore ~ is a series structure .

In binary coherent structure theory , the concepts of minimal path vectors

and minimal cut vectors play a crucial role . The analogue in MCS theory is

the concept of critical connection vectors. Using this concept we can

represent the state of a MCS in terms of its critical connection vectors .

Definition 3.3. A vector x is said to be a connection vector to level

j  if ~b(x) = j, j=0,l,... ,M.

Definition 3.4. A vector x is said to be an upper c r i t ica l  connection

vector to level j if ~‘(x) = j and ~ x implies ~~(~~) < j, j 1  ,...,M.

Similarly, we can define a lower connection vector to level 
~~~
, j.”O .l ,...,

M— 1.

The existence of such critical connection vectors is guaranteed by the

conditions of Definition 3.1.

V ~~~~ — -
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Let x be an upper critical connection vector to level j. Define C~(x)

— Ci : x1,~j}. Obviously C~ (x) is a non—empty subset of C — ~1,.. . ,n}. For

j l ,...,M, let C~ — {C~(x): x is an upper critical connection vector to

level j}. Then the follot7ing lemma shows that C~ enjoys a property similar

to that enjoyed by the minimal path sets and the minima l cut sets in the

binary case.

Lemma 3.2. For j — l ,. ..
(i).  UC~ = Li ,2 ,. .. ,n}.
(ii). If A and B are two different members of C~ 1 then A~B.

The proof follows readily from Def. 2.1 and hence is omitted.

For j=l,... ,M, let ~~~~,. . . ,v~ ~~# the upper critical connection vectors

to level j ,  where = 

~r ’~ ‘~~r~~ 
The following theorem, stated without

proof , enables us to deterrtine the state of an MCS using its upper critical

connection vectors.

Theorem 3.3. Let ~ be the structure function of an MCS. Let ~~~~~ . . ,~~~
j

be its upper critical connection vectors to level j, j—i ,... ,M. Then (3.4)

~(x)~ j if and only if for some I, l<9 <n~~.

Theorem 3.3 is used in Section 4 to establish bounds on the system

performance function.

4. Stochastic Performance of Multistate Coherent Systems.

In Section 3 we discussed deterministic aspects of MCS’s. In this

section, we determine the relationship between the stochastic performance

of the system and the stochastic performances of its components. We also

obtain bounds on system performance which are particularly useful when exact

system performance is difficult to evaluate.

—— - —— -- V.



— 11 —
Let denote the random state of componenet i, with

a

(4.1.)

P(X
i~
,1] a P~ (j )

j.O,l,... ,M and i—i ,... ,n. P~ represents 
the performance distribution of

component i Clearly

j
P~ (i) — E 

~ikk-0

M
P (M) — Z p — 1 ,

k—0

for i~’l,. . . ,n.

Let X — (X1,... i Xn) be the random 
vector representing the states of

components 1,... ,n, where the X.1,. . are assumed to be statistically

mutually independent. Then ~ (X) is the random variable representing the

system state of the MCS having structure function ~~ , with

P[~~(X)— j] — p , j—O ,1,. .. ,M ,
(4.2)

V 
P[~ (X)~j] — P ( j ) ,  j— 0 ,l ,... ,M.

P represents the performance distribution of the system. Let h—E4~~
) ;

we may express h as follows :

h E h~ (P1 .

since h is a function of the P1,. . ~~~ We may also express h alternatively:

h

where E 
~~i0 ’~~il’ 

,p~~ ) for i l ,. . . ,n . In either case we call h the

performance function of the system.

The following identity expresses a system performance function of n

components in terms of system perfurinance functions of n—i components.

Lemma 4.1. The following identity holds for h :
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N
(4.3) h (2.1,2.2,. .. ,~~~~ )  — 

~ ~~~~~~ 

h(~i;;~.. . ,~~~~ ) ,  i_ i , . . .
j  —O

where ~~~~~~~~~~~~~~ E~(J~ ,X) E Eti (X1,... ,X~_1, j, X~~1,.. . ,X).

Proof. By Lemma 3.1 and the mutual independence of the components , we

have :

N
E4 (X) — : EI[x ii 

E
~
(ji,X).

j — O i

Relation (4.3) follows immediately. II
The following theorem shows that h is strictly increasing in each p~ .

for j > 0.

Theorem 4.1. Let h(n
1
,.. ,p~) be the performance function of an NCS.

Let O<p
~~

<l for i— i,... ,n and j0 ,l,... ,M. Then h(21,. .. ,~~~~ )  is strictly

increasing in p14, i—i,... ,n and j—l,... ,M.
M

Proof. From (4.3) and the fact that Z P jj  l , i=l ,. . . ,n , we have
j — O

M
12(2.1,... 

~~~~~~ 
Z Pjj E[4(j~~X) —

j—0

Thus

9h 
= E[

~~
(ji,X) - ~(O~~X)]~ i=l,... ,n and j l ,... ,M.

pu

Since ~ is increasing, E[~~(J~ ,X) — $(Oi,X)] > 0. In addition , q ( j . , x °)

— ~ (O~~,x °) > 0 for some (‘~ ,x°) since the structure is an MCS. Since

0<
~~~

<l for all i and j, we have E[~~(j~~,X) — q,(O~ ,X)) > 0. Thus the desired

result follows. (
~

Next we obtain properties of h as a function of the P ‘~ n~ 
First

we show that h(P1~ ...,
P~) is monotone increasing with respect to stochastic

ordering. A similar result is proved by Barlow [2] for his subclass of 

- V 
-
~~ ~~~

—
~~~~~

- — - .- .-~
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V MCS’s (see Ex. 3.4). Our proof of the more general result is simpler.

Theorem 4.2. Let ~~~~ be two possible performance distr ibutions for

component i, i l ,... ,n. Assume Pi(j) > P~ (j)  for j aO ,l . . . .  ,M and i—i ,. .., n.

Let P (F) be the corresponding system performance distribution . Then

(1) P(j) > P (j ) for j -O,1,. .. ,M ,
(ii) h(P1,...,P) < h(P1,...,P).

Proof. Let X
1
,... ~~~~~~~~~~ ~X~) be mutually independent random variables

having distribution functions P1,. . . ,P(P1,... ,P) respectively. Then for

i 1,...  ,n , P~(i) > P~(j) for j—O ,l,... ,M implies that X~ < X~. Since ~ is
V 

St
increasing, ~(X) < 4(X ) .  The desired results in (i) and (ii) follow

immediately . If
Similarly, we relate properties of P, the system performance distribution,

to properties of h , the system performance function , or to properties of

the P~1
. As examples we state the following two straightforward results.

Lemma 4.2. Let h be the performance function and P be the performance

distribution of an MCS . Then

M-l
h = E P(j), where P(j) E 1 — P ( j ) .

1=0

Proof. Since 4 (X) is a nonnegative integer valued random variable ,

then E~(X) = Z P[4(X) > j], yielding the desired result.
i—a

A decomposition identity is given in:

Theorem 4.3.  Let ~ be the structure function of a MCS. Then

N
(4.4) P[~ (X)>9~] a Z 

~ij 
P[4(i~~,X)>~.], 9=1 ,... ,M.

j—0

Proof. By the law of total probability , we have :

H

~ P[4i ( X )> 9 1X~~ 11i] P[X ~.’i].
i—a
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Since the components are mutually independent , (4.4) follows immediately.

Next we obtain bounds on both the system performance function and the

system performance distribution. Using Theorem 3.1, we establish:

Theorem 4.4. Let P be the performance distribution and h be the

performance function of an MCS. Let P~ be the ith component performance

distribution for i=i,... ,n. Then for j0 ,l,. . .
n Ii

(i). it P~ (J) P(j) 1— ii
i—i i—i

M n  N n
(ii). ~ it P~ (J—l) < h < E (1— ii P~(i—l)].

j=l i—l j—l i—l

Proof. (i). By Theorem 3.1 we have mm < ~(X) < max X~. Since
1<i<n l<i<n

X1,... ,X are mutually independent , (i) follows immediately.
M

(ii). We use the fact that h = E P[4(X)~ j] and the bounds on P[~ (X)~ j1.
j — l

Next we illustrate how we can use the upper eticial connection vectors

to establish bounds on the system performance distribution P and consequently

on system performance function h. Let 4,... ,~~~~ be the upper critical

connections to level j, j—0,l,...,M. Let A~ denote the event that

r=l,... ,n
1
. By Theorem 3.3, it follows that P ( c~(X)~ j ]  = P[ U A~].r l

Let Sk 
= ~P[A1, A ... A ]. By the inclusion—exclusion principle,i2
l<i1<i2<.

n
k-i

P[4(X)>j] = E (—1)
k=1

Thus

P( 4 (x)~~j ]  < S1 = E PEA],
r 1

P[4(X)>j] > s —

LV 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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and so on , constituting upper and lower bounds on P[~~(X)~ j] — P (j —l )  for

M
J— l ,...,n. Since h a 

~ P(~~(X)~,j}; we antomatically have upper and lower
i—I .

bounds on h also. Note that P(A~) P[X >~~~] ~~~~~~~~~~~~~~~~~~~~~~
= IT P[X

u~y~~] for 
1<r<n

1 
and j=l,...,M.

i—i

5. Dynamic Models for Multistate Coherent Systems.

In the last two sections , we have studied deterministic and probabilistic

V properties of MCS ’s at a fixed point in time. Now we consider dynamic models,

i.e., models in which the state of the system and of its components vary over

time. At time 0, the system and each of its components are in state H

(perfect functioning). As time passes, the performance of each component

(an d consequently of the system itself) deteriorates to successively lower

levels, until ultimately failure occurs (level 0 is attained).

In the binary case, the length of time during which a component or

system functions is called the lifelength of the component or system; these

lifelengths are nonnegative random variables. The corresponding lifelength

distributions have been classified according to various notions , of aging.

See, e.g., [1]. Two of the important classes of life distributions are
V 

the increasing failure rate average (IFRA) class and the new better than

used (NBTJ) class. Closure of these classes under various basic reliability

operations, such as convolution of distributions and formation of binary

coherent systems, are investigated in (1]. In this section we investigate

generalizations of these useful concepts in the multistate case.

Let {x~(t), t20} denote the stochastic process representing component

i state at time t as t varies over the non—negative real numbers for

ial ,. . . ,n. The stochastic process {~~(X(t)), t>O} represents the corresponding 

~~~~~~~~~~~~~~~~~~~~~~~
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system state as t varies over the non—negative real numbers , where X(t)

a (X~(t),... ,X (t)). We assume X1(O) — H, i=L ,... ,n. We assume as before

that components are mutually statistically independent ; thus the process

(x~(t). t>0}, i—i ,... ,n, are also mutually independent.

Following Ross [12], we present :

Definition 5.1. The stochastic process {X~(t), t>O} is said to be

IFRA process if T~ inf{t: X~ (t ) .5.J }  is an IFRA random variable for

j=O ,1,... ,M—l.

In a similar fashion we may define an IFRA process for the system :

U~(X(t)), t>O}. Note that in the binary case, T~ is simply the lifelength

of component i.

The following theorem is due to Ross (12].

V 
Theorem 5.1. The Generalized IFRA Closure Theorem.

Let {X~(t). t>O}, i—i ,... ,n, be independent IFRA processes and ~

an increasing structure function. Then C~~X(t)), t>0}-is an IFRA process.

We now give a definition for NBU stochastic processes different from

the one given by Ross [12]. We then derive a simple characterization for

our NBU stochastic processes. Using this characterization , we give a

simple proof of a generalized NBU closure theorem.

Definition 5.2. The stochastic process {X~(t), t>0} is an NBU stochastic

process if T~j is an NBU random variable for j0 ,1,.. . M—l.

In a similar fashion we may define an NBU stochastic process

t>0} for the system.

The following lemma gives a simple characterization for an NBU process

(as well as for an NBU random variable). We omit the simple proof.

Lemma 5.1. The stochastic process {X(t), t>O} is NBU if and only if
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for all s>O and t>O :

St
X(s+t) < min(X (s),X ( t ) ) ,

where X (s) and X ( t )  are two independent random vatiables having the same

distributions as X(s) and X(t) respectively .

We may now prove the main result of this section.

Theorem 5.2. Let ~ be the structure function of an MCS having a

components. Let (Xi(t), t20}, i1 ,... ,n be independent NBU stochastic

processes. Then {4 (x (t ) , t>O} is an NBU stochastic process.
Proof. For arbitrary fixed s>O and t>O , let ~~~~~~~~ ,X (s) ,

X1(t),. .. ,X1~
(t) be mutually independent random variables having the same

distributions as X1(s) ~~~~~~~~~~~ X.1(t),...,X (t) respectively . Since

{X~(t)1 t>O} is an NBU process, we have by Lemma 5.1:

St
X1
(s+t) < tnin(X~(s)1 X~(t)), i 1 ,... ,a.

Since ~ is increasing, it follows that

St , I

~(X(s+t)) < 4 (min(X (s),X ( t ) ) .

I I I I

By Theorem 3.2, ~(min(X (s),X ( t) )  < min(4 (X (s)), ~(X ( t ) ) ) .  Thus
st 1

4(X(s+t)) < min(4 (X ( s ) ) ,  ~ (X (t))). Using Lemma 5.1 again, the desired

result follows. ff
Remark 5.1. The useful characterization of Lemma 5.1 makes our proof

of the generalized NBU closure theorem in the binary case simpler than the

proof given in (1].
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